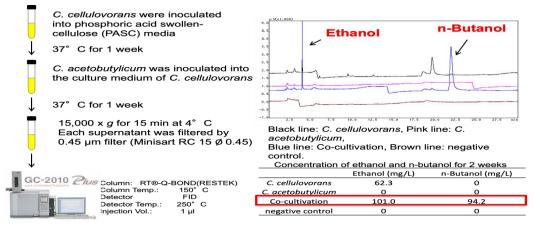
CBPによるセルロース系廃棄物からのバイオブタノール製造技術 東北大学グリーンクロステック研究センター・教授 田丸 浩

2025年9月29日記載 yutaka.tamaru.c3@tohoku.ac.jp

1.研究の概要

セルロース系廃棄物(ソルガム残渣、古紙、廃棄おむつなど)を原料として、嫌気性*Clostridium*属細菌を組み合わせるCBP(Consolidated Bioprocessing)によって、1 つのタンク内で分解・糖化・ブタノール発酵を行うことができる。


2.成果の特徴・知財

酵素糖化を必要としない微生物処理によって、セルロース系廃棄物を分解・糖化した後の生成糖を直接、 ブタノール発酵するため低コストで製造可能。海外特許取得済み

特許番号	発明名称	発明者	出願人
特許第9957538 号 US 9,957,538 B2	ソフトバイオマ スの分解方法	田丸 浩	東北大学
特許第6478366号 PCT/JP2015-059854	アルコール 製造方法	田丸 浩	東北大学

3. 既存技術との比較・アピールポイント

嫌気性*Clostridium*属細菌の共培養によって、ブタノールを一貫生産できる。ブタノールはエタノールに 比べてエネルギー密度が高く、SAF製造の原料としても利用可能である。

4.バイオものづくりへの展開例と課題

【展開例】

- ◆ブタノールはエタノールに比べてエネルギー密度が高く、SAF製造の原料としても利用 可能である。
- ◆ブタノールはGas Stripping法によってコンパクト、かつ、低エネルギーで回収を一貫 生産できる。
- ◆ブタノールは植物バイオマスの前処理に利用できる。

【課題

- ◆嫌気性菌を用いるため、窒素ガスなどの対応設備が必要となる
- ◆原料によっては酵素製剤を添加する場合もある